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ABSTRACT

Numerical methods are presented for determining the stability of a

multiple autoregressive scheme. The question of stability is important in

prediction theory, but, furthermore, the methods for determining stability

are such that they yield information which is important when fitting time series

models to data.
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1. Introduction

Let [X(t),tcZ3 , Z the set of all integers, be a zero meant

d-dimensional, covariance stationary time series with absolutely sumrable

autocovariance function R(v) = E(X (t)X T(t + v)) , veZ . AT denotes the

transpose of the matrix A . Then the spectral density matrix,

1 
-iv w

(W T R(v) e- i we[ , r

and the R(.) , are Fourier pairs,

Tr ivW
R(v)=Sif f()e dw, veZ

Formally define the inverse spectral density matrix by

fi(w)-- f*W we -W*W
4w

where A* denotes the complex conjugate transpose of the matrix A. If ti ere

exist positive finite constants X I X2 such that

X IId r f(W) 1 ),2Id , (1.1)

where Id denotes the d-dimensional identity matrix, then fi(w) exists and

has integrable components and we can define the covinverse matrices

Ri(v) WJ fi(w) a dw* vZ.
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Further, (Masani (1966)) there e:its an infinite order autoregressive repro-

sentation for [X(t),tcZ)

(a
X: A (j)X(t - j) = C(t) ,(.2

j=O

where

e(t) = X(t) - E:(2(t) I X(t- 1) , X(t -2)#,...)#,tez,

is the infinite memory one-step ahead prediction error and is a rmultiple wh-.I.e

. noise series, with positive definite covariance matrix Z.,

E(e(t) CT(t + v)) = Z
v, 0

where 6 = 1 , if j = k, and zero otherwise. Defining L to be the back-

ward lag operator, LiX (t) = X (t - j) , jeZ , we can write (1. 2) as

G(L)X(t) = e(t)

where the complex valued matrix polynomial G(e) is defined by

G (z) M A(J)ZJ .

j=O

i,
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The representation (1. 2) affords a representation of f(.)

I (ei ) Z G _ ej( j

Definition of Autoregressive Approximant

Let

f ( G I pG ,(eiW w4[-.,]p 2v p p p

where

p
E Ap(j)z

j=O

and A p(1),... ,A p(p), E are solutions to the Yule-Walker equations,

p
Z A (j)R(j - v) = 6 Z , v = o,... ,p . (1.3)
j=O

th

We call f () the p order autoregressive approximant to f(.) (Parzen

(1975)). The use of the term autoregressive is natural since the p-memory

linear prediction error, C{P), defined by

s(P) (t) X(t) eE(X y(t I)# X(t p)

is given by
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(p) p
M (t) - A (j)X(t - j), A (O) I, (1.4)

=Op p d- j=O

where Ap(1),.....A(p), and Z = E(e (P)(t)C(P)T(t))

are obtained from (1. 3).

Looking at autoregressive approximants from a prediction theory point

of view we see that for stability of predictions, it is desirable that we be Phlpe

to write X (t) as a linear combination only of past and present C (t) 

X(t) = B (k)() (t - k) , tCZ . (1.5)
k=O PP

Definition of Stationary Autoregressive Approximant

An autoregressive approximant of the form (1. 4) which has a represen-

tation, as a limit in the mean, of the form (1. 5) is said to be stationar 7 .

The use of autoregressive approximants for d = 1 has become quite

widespread (Parzen (1974), Akaike (1971)). Parzen (1976) has recently

extended his method of determining the order of autoregressive approximants to

the multiple case. In Section 2 we develop theory and algorithms for

determining whether a given set of A(l),... ,A(p) , and ; determine a

stationary autoregressive approximant. This theory allows us to obtain two

further results:

(a) Autoregressive approximants for all orders from a covarlanca

stationary time series whose spectral density is bounded rbove

and below by positive finite constants are stationary.

-. . ..p..
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(b) Algorithms for determining the autocovariances R(O),... ,R(p)

corresponding to the A(*) and L of a stationary autoregres-

sive approximant. These algorithms have several applications

in multiple time series analysis, two of which are given in

Section 3.

Finally, in Section 4 we give a numerical example of the algoritlums

developed in Section 2.

Z. The Algorithms

Given matrices A(l),... ,A(p) and ; , define the autoregressive

process (X(t),teZ) by

pE A j)X(t - j) = CM) 2.
j=O

where C(t), tCZ) is a white noise process having covariance matrix Z

We develope algorithms for determining whether there exists a stationary

solution to (2. 1) in terms of only present and past c(*)

Lemma 1: (Hannan (1970, p. 14))

If (e(t), teZ) is a white noise series, then given p initial values,

X(-p),.. , X(- 1) , the solution to (Z. 1) is uniquely defined. If all zeros of tChv

determinant I G(z) are outside the unit circle, the solution is of the form

rO

X(t) , B(k)cft - k), tez
k=O

where the elements B j(k) of the B(k) converge to zero exponentially as

k-rn.
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The B(*) can be obtained by comparing coefficients of zj in

-1 kG (z) = H(z) = Z B(k)z
k=O

Method I (via the Schur matrix)

Method I consists of determining whether the zeros of IG(z) Ire

outside the unit circle. Writing IG(z) as a polynomial of degree pd ,

pd
IG(z)I = E y(j)z'

j=O

(see Robinson (1967), p. 162 for example) we can implement

Theorem on the Schur Matrix (Schur (1917))
n

The zeros of the polynomial g(z) = z a(j)z j are outside the unit
j=O

circle if and only if the matrix S defined by S = (Sjk) •

v

Sjk = E (a(j -1 - C)a(k-1-4) - a(n+ I+ -j)a(n+I+4-k)]

j, k = 1,.... n, v = min (j - 1,k - 1) , is positive definite. The matrix S .C

called the Schur matrix of the polynomial g(o). It is particularly useful

when d = I , since then (Pagano (1973)), if the zeros of IG(z)l are all ouslde

the unit circle,

S-I 1 (r p ?)

0Y
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where r is the p X p Toeplity matrix having R(j - k) in te j row and
p

th 2 2k column, while a = E(e (t)) . Unfortunately there appears to be no vector

analogue of (2. 2).

To decide whether S is positive definite one may calculate its modified

Cholesky decomposition (see Wilkinson (1967)). Then S is positive defir.t3

if, and only. tf, the diagonal elements of the diagonal matrix in its modified

Cholesky decomposition are positive.

As mentioned above, method 1 for d = 1 produces the autocovariancFr3

of X(.) , while for d > I it does not. The methods given below do give th

R(o) . They are based on the following lemmas.

Lemma 2 (Hannan (1970), p. 19)

Let R(v) = E(X(t)X T(t + v)) , vcZ . If the zeros of G(z) I are all

outside the unit circle, then the R(e) sequence satisfies

p
E A(j)R(j - v)a6 Z 7, v 2 0. (2.3)

j=0 v,0

Lemma, 3

If L is positive definite, then the zeros of IG(z) I are all outside

the unit circle if, and only if, r is positive definite, where r is theP p
,th kthp X p block Toeplitz matrix having R(j - k) in the j row and k coltirm-

of blocks, i.e., p = Toepl(R(O),...,R( - p)P

_ _ _ _ _ _ _ _ _ 7
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Proof

Hannan (1970), p. 329, shows sufficiency, while Whittle (1963) shows

necessity.

Theorem: Bounded Spectra Guarantees Stationary Approximants

If [X(t),teZ) is a covariance stationary time series whose spectral.

density matrix satisfies (1. 1), then the autoregressive approximants for

p Z 1 defined by (1. 4) are stationary.

Proof:

We show that E and r are positive definite for p 2 1, thus
p p

ensuring that the zeros of , A (j)z are outside the unit circle.

j=0 
T

TT
Define the nonnull, pd-vector 4T= ('It "' T) where

4. is a d-vector. Then r is positive definite if, and only if, 4T T > 0
p ~

for all such t . Now

T p T
t r 7.-.tR (j - k)k

Pk jk=l -k

p T Vjrf i(j-k)wd k

jk=l k

C r (*Hf( ~) dw

p ijw
where C(w) 2 4. e is nonn"ll. Now (1. 1) implies

j=1 ~j
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4 r 2 1 C(w) C(W) d u

iP T~ iT(j-k)wPk
j,k=l

P TEI t' g4. > 0.

j=1 ~ j -J

Thus we can write the Yule-Walker equations (1. 3) as

r A = -R ,
PP P

we = R( ) A TRR ,
P PP P

whr (Ap() .. " A (p))T and R =(RT(1). ... R T(p))T . Now
Phr Pp " . p P• .

P and P are positive definite, and by the clockwise rule of matrixP p+l

determinants,

R (0) RT

Ir1 1=
PPR I"r

= Ir I IR(0) - R T r IRIP PP P

= Irp I I p P

Since E is a covariance matrix, the proof is complete.t P

[ ",- .. .. . . .. ..
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Method 2 (via the Yule-Walker equations)

Method 2 consists of solving (2. 3) for the R(.) and then checking the

resulting r for positive definiteness. The transformation from the A(-) to
p

the R(.) is not obvious (see Quenoville (1957)). The symmetry of R(O) and

the noncommutativity of the R(.) and A(.) seems to rule out a solution of

(2. 3) in terms of the matrices themselves. The matrix notation in (2. 3)

disguises the fact that there are in fact (p + l)d 2 scalar equations in the firs:

p + 1 matrix equations. Further, the symmetry of R(O) and Z actually

leaves s = pd + d(d + 1)/2 distinct scalar knowns and s unknowns in these

equations, namely

p d
Z v0 Am4 (3)R.n j - v) = , (2. 4'

j=O =1 ' tn V,O mn

for v = ,...,p ; mn = l,...vd

Define the vec operator, vec (C) , on the (n X m) matrix

C ( ,••.,Cm) by

vec (C) =(GT c' T: i . .: T )T

and the lvec operator, lvec (C) , as the vec operator on the lower triangulaz

portion of C. Then define the (a x 1) vectors r and by

r (r T(0): r T (p))T

T *T T((0) .T(p))T

Ad" "
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where

lvec (R(O)) j = 0

r vec (RU0)) j = 1,...,p

vec(1) , j=o

02, j = , ,...,tp I

where 0 denotes the n-vector of zeros. Then the equations (2. 4) can be

written

Wr = , (2.5)

where W is an (s x s) matrix determined as follows.

Since R(-v) = R T(v) , we have

(
Rjk(v) v = it p

R jk(v) R Rkj(-v )  v -- -p ... #-I (Z. 5

R (0) v = 0m I m

where m I = max (j,A) , m = min (jk) . The row number of Rjk(v) in r

is given by

I (k- Id + j - k(k - 1)/2 , v =O

d(d+ 1)/2+ (v- I)d + (k-1)d+j v l,...,p

j,k = 1,...,d

- _: ....... ...... .. .; . .-"77?
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Thus to determine W

(a) Set W initially equal to zero

(b) For fixed ma , n, v , j , t in (2. 4):

(i) The row number of W corresponding to m , n , v

is given by tI = i mn(v) .

(ii) Find by (2. 6) the indices ' , u' of the represen-

tation RVtnt(U') of Rn(u) , u = j - v , for nonnegat.ve

iU.

(iii) Add AxMat(j) to WtIt2 where t = itln,(U,)

If (2, 5) cannot be solved uniquely for r , then the process is not

stationary. If (2. 5) can be solved, it is not difficult to reorder the elements

of r to form R(p),...,R(p) , and p , and to check r' for positive
~ p P

definiteness.

Note that it is possible to solve (2. 5) uniquely for r while rp is not
~ p

positive definite. For example, let p = d = 1 Then (2. 5) becomes

a 1 R (1) 01"

If a > 1 and a > 0 , then r = R(O) a1(1 - 2) <0.

.77... . ...
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Method 3 (iterative)

If d is large, the value of s may prohibit the use of Method 2 unless

one uses an equation solver to solve (2. 5) which does not require storage of

the entire W matrix. Thus we propose an iterative method for calculating

rP which requires much less storage than the Yule-Walker equation method.

By lemma 1, if the zeros of IG(z)I are all outside the unit circle,

we can write

-1 kG (z) = H(z) = Z B(k)z k
, (2.7)

k=O

where the (t,m)th element of B(k) converges exponentially to zero as

k -. c , i. e., there exist constants C $ 0 , p such that for k sufficiently

large,

IB'& CPk  ICI <* 1Il <I

Thus we can obtain R(0),...,R(p) by

R(v) =Z B(k)XB T(k + v) , v = o,...,p . (2. 8)
k=0

The B(.) can be obtained by solving the block triangular system of equaticns

G(z)H(z) = 1d. (2.9)

F '
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Equating coefficients of zi in (2. 9), we have the difference equation with

B(0) = Id ,

min(4, p)
A(j)B(t - j) = 0 4 > 0. (2.10)

j=0

R(v) can be approximated by

M-V T
R (v)= M B(k)Z;B (k+v) v=0,...,p. (2. 11)

M k=O

Then we have the following.

Convergence Theorem for RM(e)

Let 1ICJI denote a norm of an (n x n) matrix C = (C jk). Then a

necessary condition for A(1),... ,A(p) , and 1 to define a stationary auto-

regressive approximant of order p is that

II(v) - RM(v)II = o(yV) , yI < .

uniformly in v = 0,...,p.

Proof:

From (2. 8) and (2. 11) we have, if the zeros of IG(z)I are all outsiee

the unit circle,

!Ml
MA
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ljR(v) - RM(v)II- = J B(k)ZB (k + v)JJ
k=M-v+l

E: JIB(k) I1 iI;u JIBT (k + v)II
k= M-p+l

aO

C I. P 2k
k=M-p+l

where C1 = lI- C 2d 2 , and M > K for some integer K. Then letting

a =k - (M - p + 1) , we have for M ! K, independent of v,

2M M

JJEL(v) - R M(V)11 < Czp = CZY

Thus the iterative method consists of the following steps:

(a) Find B(0),...,B(p) and R p(0),...,R p(p) by (2. 10) and (2.11).

(b) Given B(M - p),...,B(M) and RM(0),...#RM(p) , find

B(M + 1) by (2. 10) and the RM+l(e) by

RM+I(v) = RM(v) + B(M + I - v)ZB T(M + 1) , v 0 .

(c) Iteration stops if for a given 6

IRM+l(v) - RM(V) <a

IIRM(v)l <8, v =0

If not, return to (b).

rW
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If the algorithm does not converge, the approximant is not stationary.

If convergence is achieved, p can be checked for positive definiteness.P

Comparison of the Methods

(a) In most cases knowledge of the R(.) is desirable, so methods

2 and 3 seem preferable.

(b) To write a computer program of method 2 requires approximatel-

pd4 storage locations, while method 3 requires 3(p + l)d

locations (A(l),... , A(p), Z, B(M - p),..., B(M), and

RM(0),..., RM(p)) .

(c) Preliminary empirical evidence indicates that the value of M

necessary to attain convergence in method 3 is not large.

(d) Method 3 does not have the problem of the matrix W of

method 2 being ill-conditioned. However, method 3 is an

iterative method and may suffer the difficulties of any iterative

algorithm.

Thus, unless the values of p and d are quite small, method 3 appears

to be the most useful algorithm.

3. Applications of the Algorithms to Obtain R(*)

An Application to Scalar Mixed Time Series

Consider the scalar mixed autoregressive moving average process,

(X(t),teZ) , of order (pq) . defined by
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p q
I Q(j)X(t - j) = 7 0(k)c(t - k) , teZ

j--O k=O

where (e(t),tcZ3 is a series of uncorrelated random variables with zero

2
mean and variance a , and the zeros of the complex polynomials

pg (z) = E OL(jlz j

j=0

q

h(z) = E 0(k)zk
k=O

are outside the unit circle. The information matrix (Whittle (1953)) of the

parameters a = (a(l),...,a(p))T and T = (B(1),...,B(q)) is given by (soe

Hannan (1970), p. 392)

1i L T iD j

where

(, , i Qi  - k)
(Ijk ig(j i )u dw, jk l,...,p ,

Ige"tI
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S Ir ei(j-k)w
)jk =- 2 ' 7 Ih(e i, ,

I. r ei(j-k)w do ) i ..

(Ia )jk - 2 S' W g(e i )h(e -i w)

k = . ,q

Consider the two dimensional autoregressive process u(*) of order

m = max (pq) defined by

G(L)u(t) = e(t)

where

U(t) (u l (t) , uZ(t))T  , e(t) = (e(t), e(t))T

and

m 'CL(j) 0G (z) = z "
j=O 0 '(j )

glZ) 0

0 h(zJ

'-I -'-- .... -' - s x,, T -....
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where ' '(j) = cL(j) for j = O...,p , and zero otherwise, and $(j) =(j}

for j 0,...,q , and zero otherwise. Assume E(C 2(t)] = 1 and thus

E[e(t)e T(t), = I I T

where 1 is the two dimensional vector of i's . Then the spectral density

f (e) of the u(.) process is given by
U 2

~ I :11
I2 i

g~e-iw~~eiw )h(e)1
gg .

Defining

R u;jk(v) = f:l fu;j,k( W)eivW dtL

where f , k(w) denotes the (j.k)t h element of f (w) , we have
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( a %k R I(j - k) , jk - , p , (3. 1)

( P)jk=R (j - k) , j,k = i,...q (3.2)ik ';2, 2 - q (.z

(Ia )jk u; 2 (j - k) ltj = op, k I,... q (3.3)

Thus to find I in a convenient way, without any numerical quadrature, we

can find the R () by the methods of Section 2, and form I from (3. 1), (3. 2),

(3. 3). This is of particular importance when estimating the parameters of

the scalar mixed process (see Hannan (1970), p. 390).

An Application to Constrained Autoregressive Estimation

Given a sample x(l), ... , x(T) , consider the problem of efficiently

estimating the autocovariance sequence R(*) of a multiple autoregressive

process X(*) where the coefficients a1 = vec (A(l) : ... :A(p)) are subject

to the linear constraints

Ba 2 = a I  (3.4)

Hannan and Terrell (1972) consider problems of a similar nature.

Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and :

(ignoring the constraints) are obtained by solving the Yule-Walker equations

(2. 3) with



I~ T-v T
R (V) I x(t)x (t+ V) V *f..

T t= 1

replacing R(v) . Then an estimator I of the information matrix I

Of CLis given by (see Hannan (1970), p. 329)

pp

C ® D denotes the Kronecker product of the (n X m) matrix C =(Cjk) and

the (r x a) matrix D = (Dk)

C11D ... C I D

CnI nin

Then an efficient estimator a1 Of CiL is given, by applying the theory of

optimization under linear constraints (Pagano (1974)), as the solution~ of tho

normal equations

T 2 2 T 22.
(B I B)CL1  B I C

Then to obtain efficient estimators R(1) ,...,R(p) of R(O),...,R(p) subject

to (3. 4), one can use the methods of Section 2.
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4. Numerical Example

Let p = 2, d = 2 , and

-. 2580 -. 1429 -. 1471 .1280

A(1) = A(2) =

L .5572 -. 8637 -. 4732 .3305

F 2. 6034 9053]

.9053 2.1450J

Method Z gives the exact values of R(e)

3.0 1.0 1.0 -. 50

1.0 4.0 
.50 2.0

.50 .10

.05 .60

After 9 iterations, method 3 gives values, correct to 6 1 1 x 105

29999974 1.0000470]

.0000470 4.0000683

=y s
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.9999955 -.4999354
R(l) =L5000751 2.0000473

.499851S .1000909

R(2)
K0499245 .5999987

Thus for this second order autoregressive process, one needs an approxi-

mating moving average process of order 11 to obtain five place accuracy.

(Calculations performed on a CDC-6400.)

Iudd
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